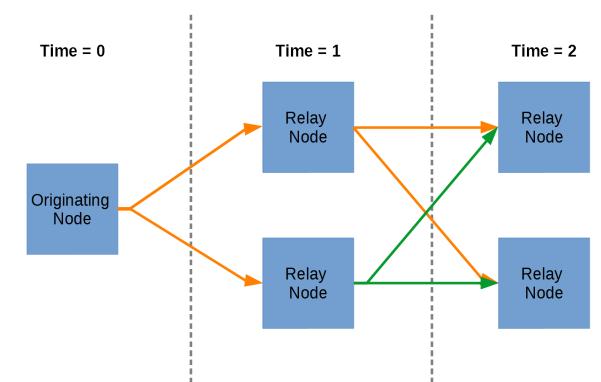
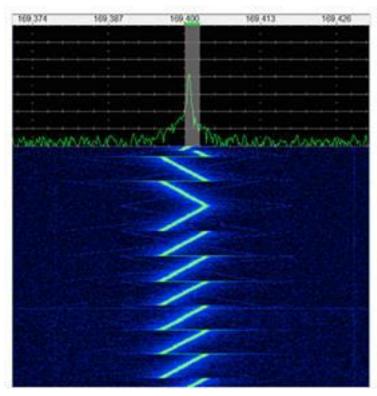
# QMesh: A long-range, low-cost wireless mesh network for digital voice communications

Dan Fay, KG5VBY RMHR NerdFest 2021




# What is QMesh?

- It's another MANET/wireless mesh network protocol
- What makes it unique
  - Isochronous -- can handle streaming data like voice
  - Self-healing/self organizing
- Relatively low datarate (at most 10's of Kb/s)
  - Enough to support vocoded voice (700bps-1600bps)
  - Can also carry small amounts of data (location, telemetry, etc.)
- Uses the LoRa Chirp Spread Spectrum (CSS) waveform
  - Provides better Eb/N0 than "standard" modulations (FSK, PSK, etc.)
  - Unique properties of the LoRa waveform (spread spectrum, low symbol rate) enable QMesh to work


# MANETS/Wireless Mesh Networking

- MANET = Mobile Ad-Hoc NETwork
  - Self-assembling
  - Self-healing
- Mesh networking
  - Nodes relay packets until they reach their destination
  - Two major types: routed and flooded
- QMesh uses a synchronized flooding network
  - Retransmit at the same time
  - Good for streaming voice



# LoRa

- LoRa is Semtech's proprietary implementation of Chirp Spread Spectrum (CSS)
  - Targets battery-powered, Internet-of-Things (IoT) devices
  - Used to implement LPWAN protocol LoRaWAN
- Benefit: CSS gives large processing gain vs. FSK/OOK
  - LoRa@1172bps: -132dBm Rx sensitivity on 70cm
  - FSK@1200bps: -123dBm Rx sensitivity on 70cm
  - LoRa supports bitrates up to 37500bps (62500bps on newer chipsets)
- LoRa is becoming increasingly popular, so products are easy to find
  - HopeRF is a popular module maker; some integrated w/MCU emerging
  - 33cm and 70cm modules easy to find
  - LoRa chipsets support 137MHz through 1GHz, as well as the 2.4GHz band
- LoRa provides large sensitivity improvement (9dB or more) vs.
  FSK



Source:

https://www.digikey.com/en/articles/tec hzone/2016/nov/lorawan-part-1-15-kmwireless-10-year-battery-life-iot



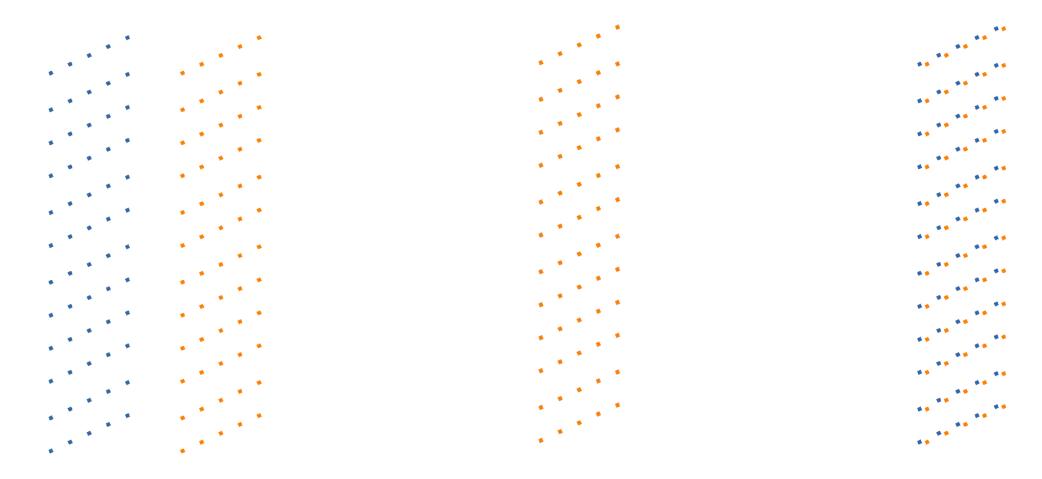
# LoRa Parameters

#### Spreading Factor (SF)

- 2<sup>SF</sup> = number of chips/symbol
- Higher SF gives higher Rx sensitivity in exchange for lower data rates
- Different SF's are somewhat orthogonal, as well as different IQ polarities
- **Bandwidth** how "wide" the chirp is
  - Wider bandwidth gives higher data rates at expense of Rx sensitivity
  - 500KHz, 250KHz, and 125KHz are typically used
- Coding Rate specifies the FEC (Hamming code)

|                     | odem Calculator Tool    |                |            |                        |         |              |                      |        |    |
|---------------------|-------------------------|----------------|------------|------------------------|---------|--------------|----------------------|--------|----|
| ator                | Energy Profile          |                |            |                        |         |              |                      |        |    |
| alcul               | ator Inputs             |                |            | Selected Configuration |         |              |                      |        |    |
| LoRa Modem Settings |                         |                |            |                        | VR_PA   | þ            |                      |        |    |
|                     | opreading Factor        | 12             | $\sim$     |                        |         |              | 3                    |        |    |
| F                   | Bandwidth               | 125            | ✓ kHz      |                        | RFOC    | <u>-</u>     | Tx                   |        |    |
| 0                   | Coding Rate             | 1              | ✓ 4/CR+4   |                        | RFIC    | <u>-</u> مسر | -<br>⊢  <b>⊢∢</b> Rx |        |    |
| L                   | low Datarate            | Optimiser On   | 5          |                        |         | Ē            | Ē                    |        |    |
| F                   | Packet Configuration    |                |            | P                      | reamble |              | Payload              | CRC    |    |
| F                   | ayload Length           | 8              | Bytes      |                        |         |              |                      |        |    |
| F                   | Programmed Preamble     | 6              | Symbols    | Calculator Outputs     |         |              |                      |        |    |
| Т                   | otal Preamble Length    | 10.25          | Symbols    | Timing Performance     |         |              |                      |        |    |
| ł                   | Header Mode             | Explicit Heade | er Enabled | Equivalent Bitrate     | 292.97  | bps          | Time on Air          | 761.86 | ms |
| C                   | CRC Enabled             | Enabled        |            | Preamble Duration      | 335.87  | ms           | Symbol Time          | 32.77  | ms |
| F                   | RF Settings             |                |            |                        |         |              |                      |        |    |
| C                   | Centre Frequency        | 433000000      | + Hz       | RF Performance         |         |              | Consumptio           | n      |    |
| Т                   | ransmit Power           | 17             | 🖨 dBm      | Link Budget            | 155     | dB           | Transmit             | 90     | m/ |
| H                   | lardware Implementation | RFIO is Share  | ed         | Receiver Sensitivity   | -138    | dBm          | CAD/Rx               | 10.8   | m/ |
|                     |                         | cts 1276, 1278 |            | Max Crystal Offset     | 72.2    | ppm          | Sleep                | 100    | nA |

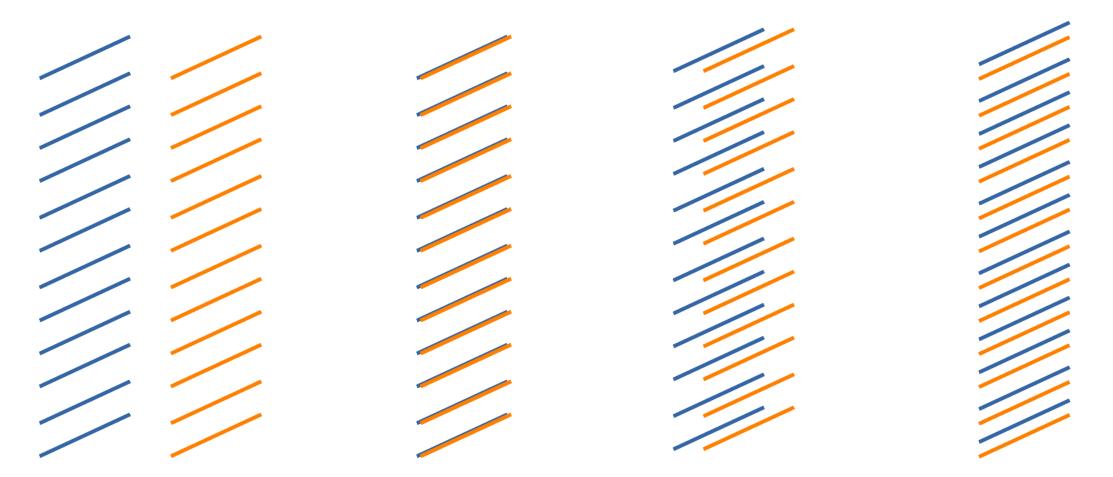
# Using the Capture Effect


- Capture effect means that we can successfully receive collisions if the colliding packets are far enough apart in received power
- Can leverage capture effect to make synchronized flooded protocols work without everyone interfering with each other
- LoRa has some features we can use to increase the likelihood of successful capture
  - Frequency separation between chips
  - Low chirp (symbol) rate
  - Tolerance of frequency error (up to +/- 25% of the LoRa bandwidth)
- Randomly "wobble" the frequency
- Can also shift things around by adding a timing offset

# Increasing Capture Success with LoRa

- Basically, "spread out" the overlapping LoRa signals so they interfere less with each other
- LoRa has some features we can use to increase the likelihood of successful capture
  - Frequency separation between chips
  - Low chirp (symbol) rate
  - Tolerance of frequency error (up to +/- 25% of the LoRa bandwidth)
- Randomly "wobble" the frequency
- Can also shift things around by adding a timing offset




### Chip-Level LoRa Overlap Reduction

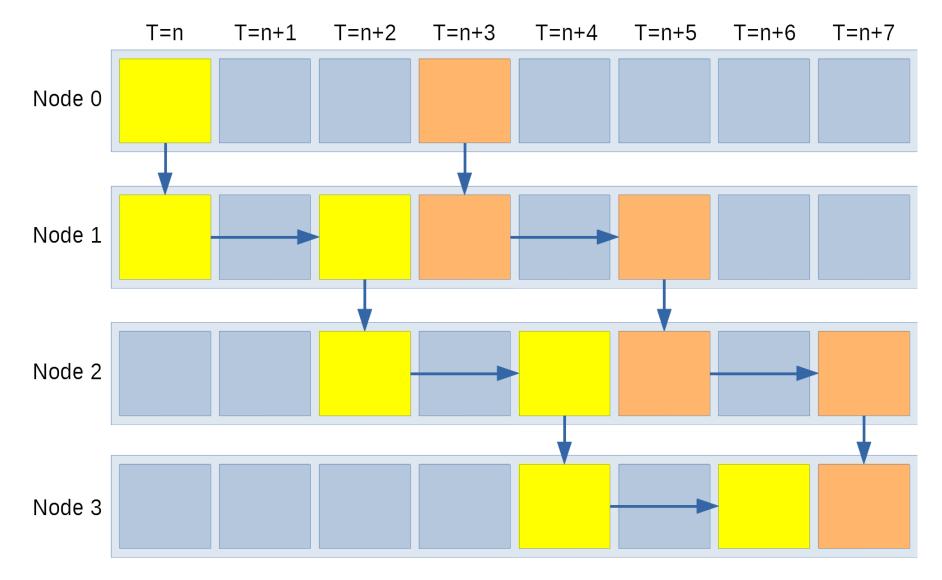


Two LoRa signals on completely Different channels Two LoRa signals on the same frequency Two LoRa signals with a very small frequency offset



#### Symbol-Level LoRa Overlap Reduction




Two LoRa signals on completely Different channels

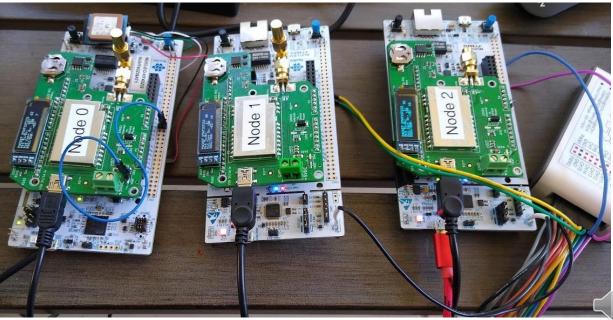
Two LoRa signals on the same frequency

Two LoRa signals with a small frequency offset

Two LoRa signals with a timing offset

### QMesh Protocol In Action




# Forward Error Correction (FEC)

- LoRa has a very simple, Hamming Code-based FEC built into it
- Can likely gain at least a few dB of performance with a decent FEC
  - Theoretical gain may be 2-10dB of coding gain in an AWGN channel (Additive White Gaussian Noise – free space line-of-sight)
  - Possibly even better in multipath-heavy situations
  - Substantial benefits in a collision-heavy environment
- Currently using Reed-Solomon-Viterbi (RSV) coding

# QMesh Test Node

- Custom LoRa Shield + STM32 NUCLEO-144 Board
- USB on the shield (black cable) supplies power to both boards
- Red USB cable connects to computer, provides debug and serial port
- OLED display provides live information without needing a connected PC





# Results

- Testing collisions
  - Worst case scenario for interference
  - Antennas are ¼ wavelength apart
- When FEC is used, PRR is 99%+ for one, two and three node setups
- FEC seems to make a big difference here
  - One node has 99%+ PRR w/o FEC
  - Two nodes has ~93% PRR w/o FEC
  - Three nodes has ~90% PRR w/o FEC
- Appears the raise the noise floor
  - Weak signals do not get received



\*CR=0 is an undocumented feature in the SX126X that completely disables the built-in error correction

# Next Steps

- Short term goals
  - Replace JSON-based interface with a protobuf-based interface
  - Make the serial interface KISS-compatible for use with APRS apps
- Longer term: Develop small FM repeaters that encode/decode voice as codec2 and use QMesh as a backhaul
  - Compact, can run off solar power
  - Easy to stand up a series of linked repeaters
  - Can also be used to extend coverage of existing repeaters
- Big benefit is accessibility
  - People can use their existing radios, so can benefit from QMesh without having to design special radios
  - Less hardware needed by users to benefit from QMesh





# Contact Info

- QMesh project
  - Github: <u>https://github.com/faydr/QMesh</u> -- source code
  - Hackaday.io: <u>https://hackaday.io/project/161491-lora-based-voice-mesh-network</u> project overview
- **Blog:** <u>https://faydrus.wordpress.com</u> (describes a lot of my radio/maker experiments)
- E-mail: <u>Daniel.fay@gmail.com</u> (<u>kg5vby@arrl.net</u> should also work)
- Twitter: @faydrus

